20,497 research outputs found

    Excitation of nonlinear ion acoustic waves in CH plasmas

    Full text link
    Excitation of nonlinear ion acoustic wave (IAW) by an external electric field is demonstrated by Vlasov simulation. The frequency calculated by the dispersion relation with no damping is verified much closer to the resonance frequency of the small-amplitude nonlinear IAW than that calculated by the linear dispersion relation. When the wave number kλDe k\lambda_{De} increases, the linear Landau damping of the fast mode (its phase velocity is greater than any ion's thermal velocity) increases obviously in the region of Ti/Te<0.2 T_i/T_e < 0.2 in which the fast mode is weakly damped mode. As a result, the deviation between the frequency calculated by the linear dispersion relation and that by the dispersion relation with no damping becomes larger with kλDek\lambda_{De} increasing. When kλDek\lambda_{De} is not large, such as kλDe=0.1,0.3,0.5k\lambda_{De}=0.1, 0.3, 0.5, the nonlinear IAW can be excited by the driver with the linear frequency of the modes. However, when kλDek\lambda_{De} is large, such as kλDe=0.7k\lambda_{De}=0.7, the linear frequency can not be applied to exciting the nonlinear IAW, while the frequency calculated by the dispersion relation with no damping can be applied to exciting the nonlinear IAW.Comment: 10 pages, 9 figures, Accepted by POP, Publication in August 1

    Formation of superheavy nuclei in cold fusion reactions

    Full text link
    Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118 and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.Comment: 18 pages, 8 figure

    Production rates for hadrons, pentaquarks Θ+\Theta ^+ and Θ∗++\Theta ^{*++}, and di-baryon (ΩΩ)0+(\Omega\Omega)_{0^{+}} in relativistic heavy ion collisions by a quark combination model

    Full text link
    The hadron production in relativistic heavy ion collisions is well described by the quark combination model. The mixed ratios for various hadrons and the transverse momentum spectra for long-life hadrons are predicted and agree with recent RHIC data. The production rates for the pentaquarks Θ+\Theta ^+, Θ∗++\Theta ^{*++} and the di-baryon (ΩΩ)0+(\Omega\Omega)_{0^{+}} are estimated, neglecting the effect from the transition amplitude for constituent quarks to form an exotic state.Comment: The difference between our model and other combination models is clarified. The scaled transverse momentum spectra for pions, kaons and protoms at both 130 AGeV and 200 AGeV are given, replacing the previous results in transverse momentum spectr

    Theoretical study of the synthesis of superheavy nuclei with Z= 119 and 120 in heavy-ion reactions with trans-uranium targets

    Full text link
    By using a newly developed di-nuclear system model with a dynamical potential energy surface---the DNS-DyPES model, hot fusion reactions for synthesizing superheavy nuclei (SHN) with the charge number Z = 112-120 are studied. The calculated evaporation residue cross sections are in good agreement with available data. In the reaction 50Ti+249Bk -> (299-x)119 + xn, the maximal evaporation residue (ER) cross section is found to be about 0.11 pb for the 4n-emission channel. For projectile-target combinations producing SHN with Z=120, the ER cross section increases with the mass asymmetry in the incident channel increasing. The maximal ER cross sections for 58Fe+244Pu and 54Cr + 248Cm are relatively small (less than 0.01 pb) and those for 50Ti+249Cf and 50Ti+251Cf are about 0.05 and 0.25 pb, respectively.Comment: 6 pages, 5 figures; Phys. Rev. C, in pres

    A novel approach to modelling and simulating the contact behaviour between a human hand model and a deformable object

    Get PDF
    A deeper understanding of biomechanical behaviour of human hands becomes fundamental for any human hand-operated Q2 activities. The integration of biomechanical knowledge of human hands into product design process starts to play an increasingly important role in developing an ergonomic product-to-user interface for products and systems requiring high level of comfortable and responsive interactions. Generation of such precise and dynamic models can provide scientific evaluation tools to support product and system development through simulation. This type of support is urgently required in many applications such as hand skill training for surgical operations, ergonomic study of a product or system developed and so forth. The aim of this work is to study the contact behaviour between the operators’ hand and a hand-held tool or other similar contacts, by developing a novel and precise nonlinear 3D finite element model of the hand and by investigating the contact behaviour through simulation. The contact behaviour is externalised by solving the problem using the bi-potential method. The human body’s biomechanical characteristics, such as hand deformity and structural behaviour, have been fully modelled by implementing anisotropic hyperelastic laws. A case study is given to illustrate the effectiveness of the approac

    Anti-Stokes scattering and Stokes scattering of stimulated Brillouin scattering cascade in high-intensity laser-plasmas interaction

    Full text link
    The anti-Stokes scattering and Stokes scattering in stimulated Brillouin scattering (SBS) cascade have been researched by the Vlasov-Maxwell simulation. In the high-intensity laser-plasmas interaction, the stimulated anti-Stokes Brillouin scattering (SABS) will occur after the second stage SBS rescattering. The mechanism of SABS has been put forward to explain this phenomenon. And the SABS will compete with the SBS rescattering to determine the total SBS reflectivity. Thus, the SBS rescattering including the SABS is an important saturation mechanism of SBS, and should be taken into account in the high-intensity laser-plasmas interaction.Comment: 6 pages, 5 figure
    • 

    corecore